05:04, 6 мая 2024 Пн

От телескопа «Джеймс Уэбб», запущенного NASA, ждут прорыва в изучении внеземной жизни и прошлого Вселенной

В космос отправили телескоп «Джеймс Уэбб», от которого ждут прорыва в изучении внеземной жизни и прошлого Вселенной.

Издание «Meduza» рассказало о нем (почти) все.

В субботу, 25 декабря, прошел запуск космического телескопа «Джеймс Уэбб» (James Webb Space Telescope, JWST), который стал историческим событием для всех астрономов — и не только. От телескопа, который приходит на смену «Хабблу», ждут так многого, он стоит так дорого, строился и откладывался так долго, что уже стал культурным явлением: с ним появляются мемы, каждому его отдельному инструменту, узлу, создателям и, конечно, исследовательским задачам посвящены научные статьи, страницы в Википедии и ролики на ютьюбе, а студенты, которые планировали писать диссертации на основе его данных, уже сами давно стали профессорами. Вы наверняка тоже слышали о нем не раз, а мы подробно расскажем о его пути, остановившись в каждой значимой точке — от места, где самый дорогой телескоп был задуман, до дальнего космоса, который ему предстоит изучить.

Штаб квартира NASA, Вашингтон, США

Что телескопу Хаббла нужно готовить смену, было понятно в NASA еще до того, как сам телескоп запустили в космос. Первый концепт преемника «Хаббла» появился в 1989 году, за год до его запуска, — предполагалось построить четырехметровый космический телескоп, работающий одинаково успешно в оптическом и инфракрасном диапазоне, и отправить его за марсианскую орбиту. Со временем проект несколько раз менялся, пока не был кардинально переработан в 1996 году.

Телескоп изначально планировался как флагманский, то есть самый дорогой и мощный инструмент NASA на годы вперед. При проектировании научных инструментов такого масштаба в них часто закладывают еще не появившиеся технологии — либо их разработают специально под телескоп, либо промышленность дойдет до них сама. Часть технологий не создана до сих пор (мы все еще не можем доставить телескоп таких размеров за марсианскую орбиту), часть, наоборот, опередила мечты сотрудников NASA (размер зеркала получилось увеличить до шести метров).

Официальный трейлер миссии «Джеймса Уэбба»

Новые открытия, произошедшие с начала работы над телескопом, перевернули науку и тоже повлияли на проект. Так, изначально одной из его основных задач должно было стать измерение того, насколько замедляется расширение Вселенной. Пока его разрабатывали, случилось невероятное: астрофизики Адам Рис, Сол Перлмуттер и Брайан Шмидт обнаружили, что Вселенная на самом деле расширяется не с замедлением, а с ускорением (и даже успели получить за это Нобелевскую премию). В итоге было решено отказаться от оптического диапазона и сделать телескоп чисто инфракрасным. Кстати говоря, поэтому JWST только условно можно назвать наследником «Хаббла», который работает в основном в оптическом диапазоне.

Инфракрасный телескоп принципом действия схож с прибором ночного видения, который в темном доме способен обнаружить человека, определить, в какой комнате стоит натопленная печка и какой температуры чай в стакане. JWST сможет видеть, во-первых, очень тусклые, чуть теплые объекты, которые для других телескопов не видны, а во-вторых, объекты, скрытые от нас пылью, которая прозрачна для инфракрасного телескопа.

Бериллиевые копи, штат Юта, США

Телескоп JWST начинается здесь. Это самое большое (85% мировых запасов) и единственное в Западном полушарии месторождение бериллия, из которого сделано зеркало телескопа — его главный элемент, шестиметровый глаз, который будет улавливать и фокусировать фотоны, прилетающие из космоса.

Бериллий — это четвертый элемент таблицы Менделеева, редкий металл, который в шесть раз прочнее стали и в три раза легче алюминия. Он отлично подходит для работы в космосе, потому что почти не изменяет свою геометрию под воздействием экстремальных температур, хорошо проводит тепло и не имеет магнитных свойств. Удельный (на единицу площади) вес этого зеркала будет в 10 раз меньше зеркала телескопа Хаббла. К слову, бериллий именно из этой шахты был на тепловом щите капсулы проекта «Меркурий», использовался при строительстве МКС, марсианских роверов «Спирит» и «Оппортьюнити», космического телескопа «Спитцер».

Бериллиевый порошок, добытый в Юте, в следующие 20 лет изрядно поколесил по штатам из одной лаборатории в другую, где его плавили, шлифовали и тестировали, прежде чем он приобрел свою финальную форму в виде 18 гексагональных идеально отполированных сот, первые из которых были готовы аж в 2004 году! На финальном этапе на каждый сегмент зеркала для повышения коэффициента отражения напылили тончайший слой чистого золота (всего 48 граммов на 25 квадратных метров поверхности) — именно оно окрашивает зеркало телескопа в желтый цвет, который можно увидеть на фотографиях.

Ни одна ракета не может вывести в космос объект диаметром шесть метров (для сравнения: диаметр сегментов МКС около 4,4 метра), поэтому зеркало на Земле находится в сложенном виде и только в космосе его лепестки «раскроются».

Университет Аризоны, город Тусон, США

Именно тут разработан NIRCam — один из четырех инструментов, в который будет попадать свет, отраженный от зеркала, и с помощью которого JWST будет изучать Вселенную. NIRCam (Near InfraRed Camera, камера ближнего инфракрасного диапазона) отлично подходит для того, чтобы наблюдать многочисленные небольшие (меньше Солнца) тусклые и не очень горячие звезды, а также видеть сквозь пыль, окутывающую молодые звезды, планеты и центры галактик. В камере 40 мегапикселей, всего в три раза больше, чем в айфоне, но это произведение технологического искусства, по своим характеристикам в десять раз превосходящее все прежние инфракрасные камеры, когда-либо установленные на космические телескопы. Айфон же, к сожалению, не видит инфракрасный свет и не сможет работать в космосе.

Штаб-квартира Европейского космического агентства,

Париж

JWST — это не чисто американский проект. Европейское и канадское космические агентства также участвуют в его создании. Например, именно Европейское космическое агентство (ESA) построило инструмент MIRI — единственный на борту телескопа, который будет работать в среднем ИК-диапазоне, то есть с более длинными волнами электромагнитного излучения, чем NIRCam. Для работы в этом диапазоне особенно важно изолировать инструмент от любых сторонних источников тепла, поэтому у MIRI есть собственная система охлаждения, и если все инструменты JWST будут работать при 39 градусах Кельвина, то MIRI — всего при семи градусах (−234 и −266 °С соответственно). Напомним, что температура замерзания воды составляет 273 кельвина, а температура космоса — чуть больше трех кельвинов, поэтому MIRI без искажений сможет изучать самые холодные объекты: планеты, астероиды, пыль и протопланетные диски, где рядом с молодыми звездами формируются новые звездные системы.

Как будет работать MIRI

NIRCam, MIRI и разработанный Канадой прибор NIRISS будут в следующие пять лет поставлять нам те красивые картинки, к которым мы привыкли со времен «Хаббла». Последний из четырех приборов «Уэбба», NIRSpec, заточен под спектроскопию.

Французская Гвиана

Участие ESA не ограничивается постройкой одного прибора — на европейской ракете Ariane 5 телескоп будет запущен в космос. И произойдет это с космодрома Куру во Французской Гвиане. Изначально планировалось загрузить телескоп в грузовой контейнер, доставить его самолетом на ближайший к космодрому аэропорт и довезти до места старта на грузовике, но выяснилось, что несколько мостов, по которым идет дорога до космодрома, могут не выдержать нагрузки.

Поэтому из Калифорнии, где проходили последние этапы строительства и тесты, телескоп через Панамский канал был отправлен в Южную Америку на океанском грузовозе MN Colibri.

Самый дорогой телескоп в истории — не тот груз, который можно просто привязать к палубе и отправить в путь. Поэтому NASA разработало для «Уэбба» специальный защитный контейнер STTARS, который весит 76 тонн, поддерживает нужную температуру, влажность и предохраняет «Уэбба» от всех возможных и невозможных повреждений в пути. Согласно выпущенному пресс-релизу, 12 октября 2021 года телескоп был успешно доставлен на космодром. Как известно, в NASA стараются все предусмотреть, поэтому, чтобы обезопасить груз от возможных пиратов, точный маршрут и график следования судна не был заранее известен и это была неожиданная, но приятная новость.

Разрабатывается ли в NASA защита от возможных космических пиратов, пресс-релиз не уточняет.

Канберра, Австралия; Мадрид, Испания — и пустыня

Мохаве, Калифорния, США

Тут одной точкой уже не обойтись, ведь речь пойдет об антеннах радиосвязи с телескопом. Три 70-метровые антенны входят в сеть дальней космической связи NASA, отстоят друг от друга на 120 градусов (относительно оси вращения Земли) и вместе перекрывают все небо. Благодаря этому, как бы ни повернулась Земля, на JWST всегда можно будет отправить команду, узнать его состояние и принять данные наблюдений.

А это нужно будет делать регулярно, ведь на JWST установлен твердотельный накопитель емкостью 65 Гб, которого хватает всего на один день наблюдений. То есть данные нужно будет передавать на Землю часто — на каждый день запланировано по два четырехчасовых сеанса связи, во время которых со скоростью 8 Мбит в секунду будет передаваться половина накопленных за день данных.

Вы можете спросить, почему бы на аппарат стоимостью 10 миллиардов долларов не добавить пару плашек памяти, ведь и мобильные телефоны, и флешки сейчас легко работают с сотнями гигабайт? Однако в космосе приходится учитывать экстремальные температурные условия, жесткую радиацию, ограничения по весу, потребляемой мощности и необходимость безотказно работать в течение нескольких лет (вот хорошая русскоязычная статья на «Хабре»).

С учетом всех этих ограничений приходится признать, что для космического носителя и 65 Гб начинают выглядеть солидно. Важно помнить, что проект телескопа был утвержден в 2006 году и в него были заложены существующие на тот день и проверенные временем технологии, которые невозможно менять каждые полгода по мере бурного развития микросхем.

С этим необходимо смириться, как и с тем, что телескопы, которые будут запущены в космос через 10 лет, строятся на электронных компонентах сегодняшнего дня.

Благодаря использованию новых технологий, телескоп Уэбба и так получился в два раза легче телескопа Хаббла, притом что его зеркало почти в три раза больше.

Всего через три минуты после запуска с космодрома телескоп начнет разворачивать солнечные панели и антенну, и все время полета до своего «офиса» он будет увеличиваться в объеме: раскладываться будет выдвижная штанга с зеркалом, само шестиметровое основное зеркало, вторичное зеркало, дополнительные антенны. И, конечно, пятислойный теплозащитный экран, который на солнечной стороне будет нагреваться до +85 °C, а на стороне, где установлена вся аппаратура, сможет при этом поддерживать температуру −230 °C. Всего телескоп совершит более 40 различных раздвижений и стыковок, что сделает его, по словам разработчиков, «самым сложным оригами в мире». В самом конце своего путешествия специальные актуаторы будут настраивать фокус зеркала, изменяя геометрию каждого отдельного сегмента с шагом в 1/10000 человеческого волоса.

Точка Лагранжа 2

Продолжаем изучение телескопа Уэбба по координатам, но уже не географическим, потому что мы уходим с поверхности Земли в космос. JWST не может, подобно телескопу Хаббла, работать на низкой орбите (545 километров), ведь тепло земной атмосферы будет ослеплять все его инструменты. «Уэбб» отправляется намного дальше, на полтора миллиона километров от Земли, в четыре раза дальше расстояния до Луны — в точку L2.

Названная по имени французского математика Жозефа Луи Лагранжа, L2 — это одна из всего пяти точек системы Солнце — Земля, в которой тело может оставаться в равновесии относительно сил притяжения и Солнца, и вращающейся вокруг него Земли. Это значит, что доставленный туда телескоп не должен тратить топливо на то, чтобы удержаться в ней.

Точка L2 находится на одной оси с Солнцем и Землей, причем Земля всегда обращена к ней своей темной стороной. Это позволяет решить сразу несколько проблем: расстояние от телескопа до Земли всегда одинаково, следовательно, упрощается обмен данными, свет (а значит, и тепло) от Солнца, Земли и Луны будет идти примерно из одного направления и сможет легко закрываться теплозащитным экраном. Кроме того, L2 — это самая далекая от Солнца точка Лагранжа, поэтому в принципе на телескоп будет попадать не так много излучения, чем в других точках Лагранжа. Впрочем, не нужно думать, что JWST будет пытаться Землей заслоняться от Солнца, как раз напротив — он будет постоянно использовать запасы топлива на борту, чтобы маневрировать так, чтобы его солнечные батареи получали достаточно энергии от Солнца. Других запасов энергии у JWST просто нет, а использование радиоизотопного термоэлектрического генератора (РИТЕГ), который преобразует тепло от радиоактивного распада в электричество, при проектировании телескопа NASA никогда всерьез не рассматривало.

«Уэбб» во многом уникален, но он будет не первым телескопом в этой точке: там уже находятся обсерватории «Гершель» и «Планк», европейский телескоп «Гайя» и российский «Спектр-РГ». Не нужно думать, что телескопы рискуют столкнуться в L2: с точки зрения математика Лагранжа, это, конечно, точка, но на самом деле это область пространства с радиусом в полмиллиона километров, внутри которой телескоп будет двигаться по сложным траекториям, называемым орбитами Лиссажу (еще один вклад европейской науки в телескоп), которые требуют минимальной коррекции двигателей. Но именно эти коррекции, для которых у телескопа будет целых 16 двигателей, работающих на невосполняемом топливе гидразине, являются фактором, ограничивающим жизнь телескопа до пяти, максимум десяти лет.

Важно отметить, что у человечества все еще нет космических кораблей, которые смогут доставить в эту точку заправочную или ремонтную бригаду с Земли (точнее, что более важно, не смогут вернуть ее обратно). Поэтому телескоп нельзя будет обслужить, как это не раз делали с «Хабблом». Это одна из причин многочисленных задержек при строительстве. Никаких масштабных аварий или происшествий не случалось, но лучше лишний раз проверить все на Земле и отложить запуск еще на год, чем запустить на полтора миллиона километров неработающий ящик ценой десять миллиардов долларов.

Сам телескоп останется в точке L2 до конца своей миссии (а потом использует последние остатки топлива, чтобы не мешать будущим телескопам и уйти на специальную «орбиту захоронения»), но мы продолжим наше путешествие.

Теперь отправимся к тем объектам, которые JWST будет изучать.

Транснептуны

Плутон и Харон

Это, например, многочисленные малые планетоподобные тела, находящиеся за орбитой Нептуна. К ним относят Седну, Эриду, Макемаке и, конечно, Плутон.

Сейчас их открыто больше тысячи, но точное число объектов неизвестно. Это «строительный мусор», остававшийся неизменным миллиарды лет с самых ранних времен формирования Солнечной системы.

За первый год работы JWST изучит 59 транснептуновых объектов, и мы узнаем, из чего они состоят, почему одни из них имеют красный оттенок, а другие — голубой, есть ли на них лед, и если да, то как он туда попал. На сегодняшний день у астрономов нет единой модели, которая объяснила бы разнообразие химического состава, формы и размеров этих объектов.

Изучение задворок нашей системы поможет нам больше узнать ее историю и в итоге лучше понять, почему Земля получилась именно такой, какой мы ее наблюдаем. Примерно в этой же области телескоп будет искать и гипотетическую девятую планету, орбиту которой предсказали астрономы Майкл Браун и Константин Батыгин в 2016 году.

up